Interior de la Tierra está enfriándose más rápido de lo esperado, revela investigación
Publicado el 18 Ene 2022
© Imagen: Paramount Pictures

El interior de la Tierra se está enfriando mucho más rápido de lo esperado, informan un grupo de científicos en un estudio recientemente publicado.

Investigadores de ETH Zurich han demostrado en el laboratorio qué tan bien conduce el calor un mineral común en el límite entre el núcleo y el manto de la Tierra. Esto les lleva a sospechar que el calor de la Tierra puede disiparse antes de lo que se pensaba.

La evolución de nuestra Tierra es la historia de su enfriamiento: hace 4.500 millones de años, en la superficie de la joven Tierra reinaban temperaturas extremas, y estaba cubierta por un profundo océano de magma. Durante millones de años, la superficie del planeta se enfrió para formar una corteza quebradiza. Sin embargo, la enorme energía térmica que emana del interior de la Tierra pone en marcha procesos dinámicos, como la convección del manto, la tectónica de placas y el vulcanismo.

Sin embargo, aún quedan sin respuesta las preguntas sobre qué tan rápido se enfrió la Tierra y cuánto tiempo podría llevar este enfriamiento continuo para detener los procesos impulsados ​​​​por el calor antes mencionados.

Una posible respuesta puede estar en la conductividad térmica de los minerales que forman el límite entre el núcleo y el manto de la Tierra.

Esta capa límite es relevante porque es aquí donde la roca viscosa del manto de la Tierra está en contacto directo con el hierro fundido y níquel caliente del núcleo exterior del planeta. El gradiente de temperatura entre las dos capas es muy pronunciado, por lo que potencialmente fluye mucho calor aquí. La capa límite está formada principalmente por el mineral bridgmanita. Sin embargo, los investigadores tienen dificultades para estimar cuánto calor conduce este mineral desde el núcleo de la Tierra hasta el manto porque la verificación experimental es muy difícil.

Dispositivo de medición para determinar la conductividad térmica de la bridgmanita bajo alta presión y temperatura extrema

Dispositivo de medición para determinar la conductividad térmica de la bridgmanita bajo alta presión y temperatura extrema. Crédito: Murakami M et al

Ahora, el profesor de ETH Motohiko Murakami y sus colegas de Carnegie Institution for Science han desarrollado un sofisticado sistema de medición que les permite medir la conductividad térmica de la bridgmanita en el laboratorio, bajo las condiciones de presión y temperatura que prevalecen dentro de la Tierra. Para las mediciones, utilizaron un sistema de medición de absorción óptica desarrollado recientemente en una unidad de diamante calentada con un láser pulsado.

Murakami dijo:

“Este sistema de medición nos permite mostrar que la conductividad térmica de la bridgmanita es aproximadamente 1.5 veces más alta de lo que se suponía”.

Esto sugiere que el flujo de calor desde el núcleo hacia el manto también es mayor de lo que se pensaba anteriormente. Un mayor flujo de calor, a su vez, aumenta la convección del manto y acelera el enfriamiento de la Tierra. Esto puede causar que la tectónica de placas, que se mantiene en marcha por los movimientos convectivos del manto, se desacelere más rápido de lo que esperaban los investigadores en función de los valores previos de conducción de calor.

Murakami y sus colegas también han demostrado que el rápido enfriamiento del manto cambiará las fases minerales estables en el límite entre el núcleo y el manto. Cuando se enfría, la bridgmanita se convierte en el mineral post-perovskita. Pero tan pronto como la post-perovskita aparece en el límite entre el núcleo y el manto y comienza a dominar, el enfriamiento del manto podría acelerarse aún más, estiman los investigadores, ya que este mineral conduce el calor incluso más eficientemente que la bridgmanita.

Núcleo de la Tierra

Crédito: Argonne National Laboratory

Murakami agrega:

“Nuestros resultados podrían darnos una nueva perspectiva sobre la evolución de la dinámica de la Tierra. Sugieren que la Tierra, al igual que los otros planetas rocosos Mercurio y Marte, se está enfriando y volviendo inactivo mucho más rápido de lo esperado”.

Sin embargo, no puede decir cuánto tardarán, por ejemplo, las corrientes de convección en el manto en detenerse.

SÍGUENOS EN TELEGRAM

Murakami agrega:

“Todavía no sabemos lo suficiente sobre este tipo de eventos para precisar su momento”.

Hacer eso requiere primero una mejor comprensión de cómo funciona la convección del manto en términos espaciales y temporales. Además, los científicos deben aclarar cómo la descomposición de los elementos radiactivos en el interior de la Tierra, una de las principales fuentes de calor, afecta la dinámica del manto.

Los hallazgos de la investigación han sido publicados en Earth and Planetary Science Letters.

Gracias por leernos. Te invitamos a seguirnos en nuestra Página de Facebook, para estar al tanto de todas las noticias que publicamos a diario. También puedes unirte a nuestra comunidad en Telegram.

Te recomendamos leer:

Fuente: phys.org
Redacción CODIGO OCULTO

Redacción CODIGO OCULTO

Autor

La verdad es más fascinante que la ficción.

0 comentarios

Enviar un comentario

Tu dirección de correo electrónico no será publicada.

Síguenos y únete en nuestras redes sociales

Síguenos en Telegram

Conócenos

Código oculto

La historia y sus misterios, civilizaciones antiguas, Ovnis, Vida extraterrestre, Complots. Información alternativa para liberar mentes. Leer más

SUSCRÍBETE (ES GRATIS)

Enter your email address:

Delivered by FeedBurner

Obras registradas

Safe Creative #1803242717113

Sitios recomendados

Exploración OVNI
UFO Spain Magazine
Ahora:
Total:

¡DALE AL PLAY! ▶

También te podría interesar…